

 Navigation

 	
 index

 	glide latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/glide/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/glide/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	glide latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.4.

 getting-started.html

 Navigation

 		
 index

 		glide latest documentation »

Getting Started With Glide

This is a quick start guide to using Glide once you have it installed.

Initially Detecting Project Dependencies

Glide can detect the dependencies in use on a project and create an initial glide.yaml file for you. This detection can import the configuration from Godep, GPM, and GB. To do this change into the top level directory for the project and run:

$ glide init

When this is complete you’ll have a glide.yaml file populated with the projects being used. You can open up this file and even edit it to add information such as versions.

Updating Dependencies

To fetch the dependencies and set them to any versions specified in the glide.yaml file use the following command:

$ glide up

The up is short for update. This will fetch any dependencies specified in the glide.yaml file, walk the dependency tree to make sure any dependencies of the dependencies are fetched, and set them to the proper version. While walking the tree it will make sure versions are set and configuration from Godep, GPM, and GB is imported.

The fetched dependencies are all placed in the vendor/ folder at the root of the project. The go toolchain will use the dependencies here prior to looking in the GOPATH or GOROOT if you are using Go 1.6+ or Go 1.5 with the Go 1.5 Vendor Experiment enabled.

Glide will then create a glide.lock file. This file contains the entire dependency tree pinned to specific commit ids. This file, as we’ll see in a moment, can be used to recreate the exact dependency tree and versions used.

Dependency Flattening

All of the dependencies Glide fetches are into the top level vendor/ folder for a project. Go provides the ability for each package to have a vendor/ folder. Glide only uses a top level folder for two reasons:

		Each import location will be compiled into the binary. If the same dependency is imported into three vendor/ folders it will be in the compiled binary tree times. This can quickly lead to binary bloat.

		Instances of types created in a dependency in one vendor/ folder are not compatible with the same dependency in other locations. Even if they are the same version. Go sees them as different packages because they are in different locations. This is a problem for database drivers, loggers, and many other things. If you try to pass an instance created from one location of a package to another you’ll encounter errors [https://github.com/mattfarina/golang-broken-vendor].

Installing Dependencies

If you want to install the dependencies needed by a project use the install command like so:

$ glide install

This command does one of two things:

		If a glide.lock file is present it retrieves, if missing from the vendor/ folder, the dependency and sets it to the exact version in the glide.lock file. The dependencies are fetched and versions set concurrently so this operation is fairly quick.

		If there is no glide.lock file then an update will be performed.

If you’re not managing the dependency versions for a project but need to install the dependencies you should use the install command.

Adding More Dependencies

Glide can help you add more dependencies to the glide.yaml file with the get command.

$ glide get github.com/Masterminds/semver

The get command is similar to go get but instead fetches dependencies into the vendor/ folder and adds them to the glide.yaml file. This command can take one or more dependencies to fetch.

The get command can also work with versions.

$ glide get github.com/Masterminds/semver#~1.2.0

The # is used as a separator between the dependency name and a version to use. The version can be a semantic version, version range, branch, tag, or commit id.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

search.html

 Navigation

 		
 index

 		glide latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

importing.html

 Navigation

 		
 index

 		glide latest documentation »

Importing

Glide has limited support for importing from other formats.

Note: If you’d like to help build importers, we’d love some pull
requests. Just take a look at cmd/godeps.git.

Godeps and Godeps-Git

To import from Godeps or Godeps-Git format, run glide godeps. This
will read the glide.yaml, then look for Godeps or Godeps-Git files
to also read. It will then attempt to merge the packages in those files
into the current YAML, printing the resulting YAML to standard out.

The preferred procedure for merging:

$ glide godeps # look at the output and see if it's okay
$ glide -q godeps > glide.yaml # Write the merged file

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/up.png

_static/down-pressed.png

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

plugins.html

 Navigation

 		
 index

 		glide latest documentation »

Glide Plugins

(Not to be confused with Glade Plugins. Pew.)

Glide supports a simple plugin system similar to Git. When Glide
encounters a subcommand that it does not know, it will try to delegate
it to another executable according to the following rules.

Example:

$ glide in # We know this command, so we execute it
$ glide foo # We don't know this command, so we look for a suitable
 # plugin.

In the example above, when glide receives the command foo, which it
does not know, it will do the following:

		Transform the name from foo to glide-foo

		Look on the system $PATH for glide-foo. If it finds a program by
that name, execute it...

		Or else, look at the current project’s root for glide-foo. (That
is, look in the same directory as glide.yaml). If found, execute it.

		If no suitable command is found, exit with an error.

Writing a Glide Plugin

A Glide plugin can be written in any language you wish, provided that it
can be executed from the command line as a subprocess of Glide. The
example included with Glide is a simple Bash script. We could just as
easily write Go, Python, Perl, or even Java code (with a wrapper) to
execute.

A glide plugin must be in one of two locations:

		Somewhere on the PATH (including $GLIDE_PATH/_vendor/bin)

		In the same directory as glide.yaml

It is recommended that system-wide Glide plugins go in /usr/local/bin
while project-specific plugins go in the same directory as glide.yaml.

Arguments and Flags

Say Glide is executed like this:

$ glide foo -name=Matt myfile.txt

Glide will interpret this as a request to execute glide-foo with the
arguments -name=Matt myfile.txt. It will not attempt to interpret
those arguments or modify them in any way.

Hypothetically, if Glide had a -x flag of its own, you could call
this:

$ glide -x foo -name=Matt myfile.txt

In this case, glide would interpret and swollow the -x and pass the rest
on to glide-foo as in the example above.

Environment Variables

When Glide executes a plugin, it passes through all of its environment
variables, including...

		GOPATH: Gopath

		PATH: Executable paths

		GLIDE_GOPATH: Gopath (in case GOPATH gets overridden by another
script)

		GLIDE_PROJECT: The path to the project

		GLIDE_YAML: The path to the project’s YAML

		ALREADY_GLIDING: 1 if we are in a glide in session.

Example Plugin

File: glide-foo

#!/bin/bash

echo "Hello"

Yup, that’s it. Also see glide-example-plugin for a bigger example.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/minus.png

_static/file.png

